THE BEST OF BOTH WORLDS
INTEGRATING UML WITH Z FOR
SOFTWARE SPECIFICATIONS

t is well known that the discipline of software

engineering has been bedevilled by quality

problems for decades, and that a substantial

proportion of faults are subsequently traced back

to deficiencies in specifications. A major cause of

specification deficiencies is the use of natural
language text, with its inherent scope for errors due to
ambiguity, contradiction etc. In other branches of
engineering this problem is greatly reduced by making
extensive use of both diagrams and equations: in both
cases there are common notations that are universally
understood. Yet software engineering has largely
avoided mathematical notations altogether, whilst
producing a wide variety of competing diagram types
with associated methodologies.

In recent years matters have been significantly
improved by the growing popularity of the UML
(Universal Modelling Language) notation, which is
suitable for documenting both software specifications
and designs. UML is fast becoming a de facto standard.

FIG. 1 CLASS DIAGRAM

PARTY

Name, addr.

BILL
Date, item
list; total

i]
maintained by

For example, I recently read a telecommunications
specification liberally scattered with UML diagrams,
but without any mention that they were UML
diagrams. It was assumed that the reader would
recognise them. This development is very welcome but
is not by itself sufficient, because there are important
aspects of software specifications that cannot readily
be expressed by diagrams.

By contrast the formal specification language Z,
although longer established than UML, has only been
emploved in a small minority of software projects,
usually where the customer has insisted on the use of
formal methods because the application concerned is
critical to safety.

After gleaning some practical experience of both
UML and Z, the author evolved a method combining
both notations that utilises the strengths of each to
compensate for the weaknesses of the other, and so
minimises the need for natural language text in
software specifications. This method has been
employed for specifying a variety of small extra
features added to a large Unix based telecommuni-
cations system.

EQUIVALENCE EXAMPLE

To explain the equivalence between UML and Z it seems
best to explore a small example. Imagine a software-
controlled system for hiring out bicycles from railway
stations. Typically a commuter would ride his own
bicycle to his local station, then at his destination hire
a bicycle from a rack to complete the journey to his

by Stephen Martin

Software engineering

office in town. (Normally, overcrowding on commuter FIG. 2 Z SPECIFICATION FOR BICYCLE HIRE EXAMPLE (UPPER
services precludes carriage of bicycles on these trains.) PORTION ONLY)

Each cyclist is given a swipe card to operate the

. 01 [DATE, TIME, DATETIME, STRING]
locks that tether the bicycles to the station racks. The 02 Vali?ity o= valid | invalid _ _
tethering chain incorporates an electronic tag to b Fa;g\gﬁ SE;U“GU'EI.b'ﬂkeflsearsIwheel | chain | steering |
identify the bicycle. The details of these technologies 04 CyclesState ::=ready | hired | in repair
are not relevant to the example, but it can be assumed 05 ABicycle
that the combined effect is to track the hiring of 8? g“;'.‘:[r “:"’de}zsm'”‘:'

. . 137 e B = 1al 2
bicyeles and permit billing. A eyclist may only hire one 08 State : CycleState
bicycle at a time. 09 FaultList : F FaultType
A possible class diagram is shown in Fig. 1, and the 19 Altem
’ : i s T : 11 Start, End : DATETIME
S'talt of an f:quwaler%tiz specmcan?n in Fig. 2 (with 3 From, To - STRING
line numbering to facilitate referencing from this text). 13 Cost :R
The class diagram is the UML diagram that most 14 ABill
overlaps with Z, and this should be reinforced by using 15 Date : DATE
matching names for classes and sub-schemas, 3? ITt:{:f:hF g
associations and functions. The upper portion of the 18 ACard
box for each class contains its name, the middle portion 19 1d N
its attributes (internal data) and the lower portion its g? g‘;’r‘;‘é :'B?;Ii-gity
operations. Fig. 1 omits the class operations. This is - T ﬁy'
commqn when a class c.hagram is ﬁrst.drawn. The 5 Name, Address : STRING
operations are determined later (typically when - AHiring
creatln:g the sequence dla_lgrams) anc_l then added Fo Fhe " Start, End : DATETIME
class diagram. An asterisk annotating an association % ARack

between classes stands for ‘many’. 27 Station : STRING

Observe that each class with non-trivial attributes has 28 No:N
both a Z sub-schema and a finite set to represent its 29 ABikeHire (main schema)
instances. For the ‘rack’ class these are at lines 26 -28 and 30 Lelaidyﬂikes, lhiredBikes, bikesinRepair: F ABicycle
o :) 31 ills : F ABIl
35. Each association between classes is represented by a o cards: F ACard _
function. For one to many associations a function can 33 cyclists, supplierRepairers: F AParty
: 1 34 hirings: F AHiring
either map from the many class to the one class (e.g. ‘sent 35 racks: F ARack
to’) or from the one class to the many class (e.g. lists — 36 hireOf : AHiring —+ ABicycle
. i : 37 hireBy : AHiring — AParty

note that the range elements in these case are finite sets). %5 hiraFoom, hiteto - AHiring —» ARack
39 tethers : ARack — ABicycle
40 identifies : ACard — AParty

e Constraints and invariants: In this example, there is a1 lists.: ABill — E AHirin

clearly a restriction on the participation of instances 42 maintainedBy :ABicvje —* AParty
- o . g - . 43 sentTo : ABIll —+ AParty

of the ‘bicycle’ class in the associations with hirings

and racks. A hired bicycle is not a bicycle that is
A, - ¥ anid v ey . FIG. 3 Z SPECIFICATION INVARIANTS FOR BICYCLE HIRE EXAMPLE
LS. 10 a-stalion . Tack AL Vige Wersa. TS type: o (SELECTION) AND SPECIFICATION FOR ‘RECORD HIRED’ OPERATION

information is known in UML as a constraint and

cannot be captured on a class diagram such as Fig. 1. 44 E (invariants)
Instead an OCL statement would be needed. In Z it is 45 readyBikes M hiredBikes = @

: = : ; ; 46 readyBikes 1 bikesinRepair = @
(Iaasﬂy ex%nessed with an invariant statement t}.xat the 47 hiredBikes M bikesinRepair = §
intersection of the hired and ready sets of bicycles 48 gom :ire0f=:11om l;‘ireBy':dom hireFrom = hirings

= . - = 49 om hireTo C dom hireFrom

must be empty; see line 45 of Fig. 3. 50 ran tethers = readyBikes

Another constraint arises from the bill-cyclist- 51 dom lists = dom sentTo = bills

ams : M 3 52 vh :ran lists ® h C hirin
hiring ‘loop’. Each hiring is both recorded on a bill and 53 b - bills Yh : lists b .%,Siregy h = SentTo b
3 = i : : 54 Ve : cyclists ® #{(dom (hireBy > c))\(dom hireTa)} <=1
ass‘ogated‘w lth_ 2 'Spi::]lﬁc ;y.CIIISt' Yet nott; Ellll possible 55 dom maintainedBy = readyBikes LI hiredBikes L bikesinRepair
pairings are pellJ TIISS;I e g 1r1ng must obviously oqu %6 Récord hired (bperation)
appear on a - ill that 'IS ‘destmed forl the cjychst - readyBikes readyBikes
concerned! This constraint is expressed in Z with an 58 hiredBikes hiredBikes'
invariant statement that for every bill, for every hiring % bicycle? : ABicycle N
on that bill, the hirer must be the cyclist that the bill is 60— (pre-conditions)
. 5 i 7 il i ? —
sent to (line 53 of Fig. 3). 61 bicycle? & readyBikes A bicycle?.State = ready
62 (post-conditions)
g 5 5 63 bicycle?.State' = hired A readyBikes' = readyBikes\[bicycle?} A

e Sequences and states: Fig. 4 is a sequence diagram for 64 hiredBikes' = hiredBikes U (igyde®} | E\blopdel)

the ‘hire’ use case where the outcome is successful, =»

COMPUTING & CONTROL ENGINEERING | APRIL 2003 9

FIG. 4 SEQUENCE DIAGRAM FOR A SUCCESSFUL HIRE USE CASE

ﬁc\/ciist
‘Rack

Card swipe

‘Hiring

:Card ‘Bicycle

Validate

Display
‘no faults’

Indicate
‘released’

Bike removed

Record hired

>

I__Hires_tarted,

(Possible other outcomes of the hire use case include
an invalid or expired card, a cyclist declining to hire a
faulty bicycle and a cyclist not removing a bicycle in
the time allowed before the rack re-locks it.) There is no
direct Z equivalent. In drawing up sequence diagrams,
operations are invented and can then be added to the
class diagram. So in this example the ‘card’ class
acquires a ‘validate' operation, for instance.

Sequence diagrams are also valuable in discovering
the lifecycles of classes, which can then be documented
with state diagrams. In this example the ‘bicycle’ has a
significant lifecycle and a possible state diagram for it
is given in Fig. 5. This Figure illustrates many of the
features of state diagrams. The ‘maintenance’ states
have been separated as concurrent states because of a
decision to allow bicycles with faults to be hired at the
cyclist's discretion. The state diagram indicates that
the fault list is cleared every time the ‘fault-free’ state
is entered and that the list is updated whenever a fault
is reported. The diagram also shows that the ‘list
faults’ operation can be invoked in any state, but the
‘record hired’ operation will only be actioned if the
bicycle is in the ‘ready’ state.

The outer box on Fig. 5 encloses the entire lifetime of
an object instance. The solid dots within it specify that
when a new bicycle object is created the parallel states
initialise to the combination ‘ready’ and ‘fault free’.

States can be handled in Z by listing them with an
enumerate and including state attributes in sub-
schemas. Alternatively there can be a subsets for the
instances in each state. Both these approaches are
illustrated in Fig. 2 for the bicycle class (see lines 4, 8
and 26). In this case, however, the ‘fault free’ condition

always corresponds to an empty set fault list, so an
explicit maintenance state attribute has not been
declared. By contrast, transitions between states can
only be indirectly specified in Z. This is done by

recording the before and after states as pre and post-
conditions of operations.

e Actions and operations: Although state diagrams
identify where particular actions are required (within
states, upon entry to or exit from states, or on
transitions between states) they cannot specify what
an action does. Likewise for operations identified on
sequence diagrams. However, activity diagrams can be
used to describe how actions or operations (or indeed
whole use cases) should proceed.

The Z definition of an operation comprises its input
and output parameters and its pre and post-conditions.
The pre-conditions specify the validation required
before allowing the operation to execute and the post-
conditions specify the changed condition of the system
after it has completed (see Fig. 3, lines 56-64, which
specifies the ‘record hired’ operation of the bicycle
class.) Lines 5758 declare that the readyBikes and
hiredBikes sets are changed by the operation. Line 59
declares that there is only one input to the operation —
the bicycle in question. The pre-conditions state that
the bicycle must be in the readyBikes set and that its
state attribute must have the value ‘ready’ (thus
agreeing with Fig. 5) for the operation to be allowed.
The post-conditions state that the state attribute has
heen changed to the value ‘hired’ and that the bicyele
has been removed from the readyBikes set and added to
the hiredBikes set.

PICKING THE BEST AND PLUGGING THE GAPS
Although, as has been demonstrated. there is
considerable overlap between UML and Z, there are
aspects of software specification that only one notation
covers, or for which one notation is clearly superior to
the other. These cases are now summarised.

e Constraints and invariants: UML has had to be
augmented with OCL to capture association
constraints. As a type of pseudocode OCL is prone
to the problems inherent in natural language
specifications. The Z equivalent, the invariant
statement, does not have this disadvantage and is
usually more concise. Therefore invariants are to be
preferred for documenting constraints.

e States and sequences; In Z, it is easy to declare a set of
states, but hard to define the transitions between them.
The state transitions can only be gleaned by studying a
set of operations. Working out possible legal sequences
of events is even harder. Clearly the UML state and
sequence diagrams are essential for documenting
these aspects of a software specification.

e Action and operation specifications: In UML,
operations are identified on the class diagram and
actions on the state diagram, but the only means of
specifying either is with an activity diagram. The
activity diagram can also define a whole use case
(although some methods use structured English for
this). Operations can also be defined in Z, but here the
definition of ‘operation’ is broader and can encompass
actions and use cases as well as true class operations.

The difference between the activity diagram and the
Z operation is this. In Z it is impossible to define how
an operation should execute: only the pre-conditions
that must be met for it to go ahead and the conditions
that must pertain after it has completed. Hence this
yields a pure specification, uncontaminated by any
implementation detail. By contrast the UML activity
diagram is not far removed from a flow chart. It really
defines an algorithm, although it does have some novel
features e.g. support for concurrent processing and an
efficient means of representing iteration. Nevertheless
it is very hard to draw an activity without constraining
the implementation.

Hence activity diagrams should be used only where
it is necessary to enforce a particular algorithm on the
programmer. In normal circumstances a Z operation is
to be preferred.

PUTTING IT ALL TOGETHER

In summary, work normally starts with the use case
diagram. Next the components into which the system
is partitioned are identified (in an object-oriented
project these will be classes). From this point work
proceeds in parallel to produce the UML class and

Software engineering

FIG. 5 STATE DIAGRAM FOR THE BICYCLE CLASS

IDeIivered/create bicycle object

Fault free

iry: clear
fault list

Return
from hire

Removed
for repair

Record hired Report

fault/add

1
1
1
|
|
|
I
|
|
Return |
1
{ to fault list
1
1
I
|
|
|
1
|

from

Faulty

Report fault/
return fault list

I_j List faults/

return fault list

N

sequence diagrams and the Z sub-schemas and data
declaration part of the main schema. Thereafter
careful consideration of the class diagram should
identify both constraints (to be recorded as Z
invariants) and ‘live’ classes (which will each require a
state diagram). The actions on the state diagrams and
the operations of classes are specified as Z operations.
Optionally, activity diagrams are created to define the
algorithms for actions, operations or whole use cases
(but only where it is necessary to prescribe the
implementation).

The differing fortunes to date of UML and Z may be
attributed to their separate origins in the disparate
academic and commercial worlds. From the
programmer’s viewpoint the advent of UML promises
a welcome standardisation of competing notations,
many diagrams of which were of long standing and
therefore quite familiar. By contrast, the mathematical
notation of Z often appears daunting to the average
programmer. Yet most people will have been taught
basic set theory and Boolean algebra at school, whilst
predicate calculus is usually included (in the form of
‘assertions’) in tertiary computer science and software
courses. With these foundations, the task of learning
Z is not intrinsically any more difficult than learning a
programming language such as C.

Given its compatibility with Z (as demonstrated in
this article) the growing popularity of UML presents
an opportunity to pull through formal methods into
mainstream commercial projects. This would be a step
towards a more professional future for software
engineering. Specifiers who combine UML with simple
Z, by employing methods such as the one outlined in
this article, should find that they get the best of both
worlds! i

Stephen Martin worked 20 years in telecommunications
software for Plessey, OPT and Marconi.

COMPUTING & CONTROL ENGINEERING | APRIL 2003

Copyright © 2003 EBSCO Publishing

